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Prospects for In-Situ HEXRD

● Kinetic Studies of Phase 
Transformations in Bulk

➤ Solid – Solid
➤ Solid – Liquid
➤ Magnetic

! Magnetoelasticity
" Atomic motions

● Crystal Chemistry
➤ Interstitial/Vacancy 

Distribution 
➤ Coefficients of Thermal 

Expansion
● Disorder Systems?

Example of in situ devitrification of a 
Ti-Zr-Cu-Ni amorphous alloy
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Requirements

● Fast data acquisition
● Good S:N
● Furnace Design

➤ Eulerian Cradle
➤ Very low lateral and 

radial thermal gradient (~ 
±2°C over 4 mm distance)

➤ ~1800 K
➤ Inert to Oxidizing
➤ Sample rotation for 

improved powder 
averaging

➤ Sample Containment
➤ Uniform Heating
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Data Acquisition
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➤ MAR3450
! Fixed Position
! Single Frame per exposure
! Longer cycle time
! Larger area than most CCDs

0.1065 Å, do = 0.635 m
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Data Acquisition

● For Amorphous 
Structural 
Dynamics

➤ Relaxation rate
➤ Nucleation rate

● For Solid-State 
Phase 
Transformations

➤ Displacive
➤ Reconstructive

● For Liquid-Solid 
Transformations

➤ Degree of 
undercooling
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› Thus, the nucleation rate is strongly 
dependent on T and ∆T

Y.J. Kim et al., Appl. Phys Lett., 68 (1996), p. 1057.
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Amorphous or Liquid ‘disordered’ State

Reciprocal Space 
Measurement

➤ Measured intensity I(Q)
➤ Corrected for background 

and Compton Scattering
➤ Difference in the local 

atomic number density 
from the average density

! ai is the concentration
! fi is the scattering factor

Real Space Determination
➤ Fourier transformation of 

S(Q)
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But there is more information!

● With high S:N, what does the difference in the total 
scattering function, S(Q), from one time step to the next 
show?

➤ If the structure is changing, the ∆S(Q) should show not only how, but 
how much.

➤ The rate of the change should reflect the volumetric change with
time

➤ So we can extract out the diffraction pattern of only the nucleating 
phases
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What we don’t see with a casual observation

● Amorphous 
Zr70Pd20Cu10

● Heated to 630 K
● Compare after 

400 s at T
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Example, Structural Relaxation and 
Nucleation of a Metallic Glass

● Rapidly solidified Zr70Pd20Cu10

● In Situ heat at a T < Tg

● Compare the changes in S(Q) with time
➤ Observe the structure of the crystallizing phase
➤ The rate of the change should reflect the volumetric change with

time (i.e, JMA should hold true)
! The phase fraction transformed and the kinetics between the DSC and the 

HEXRD should be equivalent!
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Kramer, M. J., M. F. Besser, et al. (2003). "Devitrification studies of Zr-Pd and Zr-Pd-Cu metallic glasses." 
Journal of Non-Crystalline Solids 317(1,2): 62-70.

Kramer, M. J., M.F. Besser, E. Rozhkova, and D.J. Sordelet,“Influence of Short-Range Order on 
Devitrification in Zr70Pd20Cu10 Metallic Glasses”,Intermetallics.
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Zr70Pd20Cu10
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Structural Relaxation

● Can we follow the structural changes during an isothermal 
anneal below Tg?

L. C. Chen, F. Spaepen, Nature 336 (1988) 366
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Structural Rate Change

● ∆S(Q)/dt should then 
follow the DSC trend if 
they are both measuring 
the same phenomena.

● Set the minima to be the 
demarcation from 
relaxations to nucleation 
and growth
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Structural Relaxation, cont.

● If relaxation proceeds 
nucleation, the rate of 
change should decrease 
with time, corresponding 
to the DSC results.
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Relaxation vs Devitrification, ∆S(Q)

● ∆S(Q) increases 
w/ time at T

● Clear differences 
in ∆S(Q) 
between the 
relaxation and 
nucleation
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Johnson-Mehl-Avarami

• Volume Fraction 
# ln(k) values DSC and 

HEXRD data are 
linear

# n values are also 
consistent

• Confirms that the 
HEXRD and DSC are 
measuring the same 
phenomena

MS 
T (K) ∆T ln(k) n 

658 20 -11.40 2.35
653 25 -12.52 2.18
648 30 -14.86 2.40
627 51 -20.22 2.39
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Can we do the same for a liquid system?

● Subtler differences
➤ Changes in short-

range order (SRO)
➤ Pair-Pair 

correlations only
! 3 body correlations 

may be necessary

● Evidence for 
Structural Changes 
in the Liquid State

➤ 1st or 2nd order
➤ Chemistry effects

● Can diffraction be 
used to refine 
simulations?
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Comparing structure of liquid Al

● Structure of MDSL 
and Mendelev et al
potentials are close to 
experimental results.  
Very close to a “hard-
sphere” liquid.
Song and Morris, PRB 
2003.

● Ercolessi & Adams 
potential is more 
“icosahedral” and has 
higher interfacial free 
energy.

● Suggests correlation 
between structure of 
liquid and interfacial 
free energy.
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Structure of liquid Al, theory and experiments

● What is the best 
way to compare, 
S(Q) or g(r)?

● How accurate are 
the absolute pair-
pair correlations?

● Is icosahedral
order intrinsic or 
an artifact of the 
potentials? 0.0
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Comparing structure of liquid Al

● Icosahedral
structure can be 
seen more clearly in 
the change in g(r) 
(or S(Q)) with 
temperature.

● Sequential X-ray or 
neutron scattering 
data can then be 
used to validate the 
models.

Position of icosahedra peaks
(Leung & Wright, Phil. Mag. 1975)

Ercolessi & Adams potential
Mei, Davenport,
Sturgeon & Laird potential
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Experiments vs Models

● Comparing 
S(Q)

➤ fewer artifacts 
from FFT

● HEXRD and 
neutrons 
compare very 
well

➤ Artifacts easier 
to eliminate

➤ Apparent 
icosahedral
order 
disappears
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Experiment vs Model

● Medelev
potential 
closest to 
HEXRD and 
neutron results

➤ Compare 
sequential T 
scans using 
HEXRD

! 950 to 1300 K

-0.20

-0.10

0.00

0.10

0.20

0.30

0.40

0.50

0 1 2 3 4 5 6 7 8

Q(Å-1)

d 
S(

Q
,9

50
-T

)

91
178
268
349

APS

-0.20

-0.10

0.00

0.10

0.20

0.30

0.40

0.50

0 1 2 3 4 5 6 7 8

Q(Å-1)

d 
S(

Q
,9

50
K

-T
)

50
100
150
200
250
300
350

Mendelev



22

Changes in the Short Range Order?

● E&A and MDSL 
increase in local 
order with 
decreasing 
temperature, 
which is 
consistent with 
increase in 
icosahedral order

● Mendelev
potential shows a 
more modest 
increase in order 
with no obvious 
icosahedral order

● Caution! 3 body 
correlations need 
to be performed
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● HEXRD is a powerful tool to investigate the structure 
of ‘disordered’ as well as ordered systems

➤ Full samples penetration eliminates many sample artifacts
➤ Many containment systems can be brought to bear
➤ Rapid data acquisition and high S:N allows for time, 

temperature sequential data sets to be taken on the second to 
minutes
! But we need to collect data faster without loss of S:N!

● Rapid sequential sampling is shown to be an excellent 
method for comparing MD simulations where time and 
spatial scales are difficult to correlate

● We are not ‘flux’ limited’ but detector limited.
➤ However, focusing is crucial with higher data rates
➤ Systematic structural studies requires stable optics

Conclusions
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